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In this paper it is shown that Kn(X, CO, (Q)) is proximinal in L(X, Co(Q)) when
X* is uniformly convex, thus solving Problem 5.2.3 of Deutsch, Mach and,
Saatkamp (l. Approx. Theory 33 (1981), 199-213). The solutions of Problem 5.2.5
of Deutsch, et al. and the of problem 5.B of Franchetti and Cheney (Boll. Un Mat.
Ita!' B(S) 18 (1981), 1003-1015) are also included. © 1986 Academic Press, Inc.

INTRODUCTION

If X and Yare normed linear spaces, then L(X, Y) denotes the set of all
bounded linear operators from X to Y, K(X, Y) the set of all compact
operators in L(X, Y) and Kn(X, Y) the set of all operators of rank ~n in
L(X, Y).

If A is a closed subset of the normed linear space X, then A is said to be
the proximal in X if, for each x E X, there is Yo E A such that

Ilx - Yoll = d(x, A) = inf{ Ilx - yll; YEA}.

If C is proximal in X the set-valued function

Pc: X --+ 2c defined by

PcCx) = {YEC; Ilx- yll =d(x, C)}

is called the metric projection from X onto C. If there is a continuous
function g: X ---> C, such that g(x) E P cCx) for each x E X, then g is called a
continuous selection for the metric projection Pc.

*Part of a thesis submitted for the Ph.D. degree at the University of Newcastle Upon Tyne,
written under the supervision of Dr. A. L. Brown.
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The proximinality of K(X, Y) in L(X, Y) has been studied by several
authors, but only a few authors have worked on the proximinality of
Kn(X, Y) in K(X, Y) or L(X, Y).

It is easy to show that if y* is the dual space of Y, then for any normcd
linear space X, the set Kn(X, Y*) is proximinal in L(X, Y*). Fakhoury [5]
used the fact that for 1 < p < 00, the metric projection from Ip onto any of
its finite dimensional subspaces is w*-continuous, to prove that for any
Hausdorff topological space Q, the set Kn(lp, Co(Q)) is proximinal in
L(lp, Co(Q))· Deutsch et al. [3] used the fact that the metric projection
from any strictly convex space X onto any of its finite-dimensional sub­
spaces is continuous, to prove that if X* is strictly convex and if Q is a
Hausdorff topological space, then the set Kn(X, Co(Q)) is a proximinal in
K(K, Co(Q)). They also proved that if X* is uniformly convex then
Kn(X, co) is proximinal in L(X, co).

This paper contains a further study for the proximinality of Kn(X, Y) in
L(X, Y) and K(X, Y). The paper is divided into three sections:

Section one contains the necessary known results that will be used later,
it contains also some definitions and notations. In section two it is shown
that if x* is uniformly convex and Q is a locally compact Hausdorff space,
then Kn(X, Co(Q)) is proximinal in L(X, Co(Q)). This result includes the
results of Fakhoury [5] and Deutsch et al. [3], and gives a positive
solution to Problem 5.2.3 of Deutsch et al. [3]. Section three deals with the
proximinality of Kn(X, Co(Q)) in K(X, Co(Q)) when dim X < 00. The main
result is that, if X is a finite dimensional Banach space, then Kn(X, Co(Q))
is proximinal in K(K, Co(Q)) for each locally compact Hausdorff space Q,
if and only if for each n-dimensional subspace Y of X*, the metric projec­
tion P v from X* onto Y has a continuous selection. It is shown also that
there is a Banach space X, a compact Hausdorff space Q and two positive
integers m =1= n such that K",(X, C(Q)) is proximinal in L(X, C(Q)) whereas
Kn(X, C(Q)) is not. This gives a negative solution to Problem 5.2.5 of
Deutsch et at. [3]. The space c(Q, X) of all continuous bounded functions
from Q to X, appears naturally in the proof of those results, and it is shown
that there is a finite dimensional Banach space X, a subspace Y of X and a
compact Hausdorff space Q, such that the set c(Q, Y) is not proximal in
c(Q, X). This gives a negative solution to the problem 5.B of Franchetti
and Cheney [6].

1. DEFINITIONS AND KNOW'" RESCL1'8

If C is a subset of the normed linear space X, and x E X then d(x, C) =
inf{lx - Yil; Y E C} is the distance of x from C. If there is Yo such that
!Ix - Yoil = d(x, C) then Yo is called a "best approximation" from C. C is
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said to be proximal in X if for each x E X there is y E C such that Ilx - yll =
d(x, C). It is easy to show that if C is a compact subset of the Banach space
X, then C is proximinal in X, it follows from this, that every finite-dimen­
sional subspace Y of X is proximinal in X.

If A and C are two subsets of the normed linear space X then

l5(A, C) = sup{ d(x, C); X E A}

is the deviation of A from C. For each nonnegative integer n ~ 0.

dn(A, X) = inf{ l5(A, N); N is an n-dimensional subspace of X}

is the Kolmogrov n-width of A in X. If there is a subspace No of X of
dimension n, such that dn(A, X) = l5(A, No), then No is called an "extremal
subspace for dn(A, X)," and we say that dn(A, X) is attained.

If Q is a Hausdorff topological space and X is a normed linear space,
then B(Q, X) denotes the set of all bounded functions from Q to X. If r is a
topology on X then c(Q, (X, r)) denotes the set of all bounded functions
from Q to X which are continuous with respect to r. Furthermore,
Co(Q,X) = {fE c(Q, (X, 11'11 )); Va> 0, the set {q E Q; Ilf(q)11 ~ a} is com­
pact. When X = R "the set of real numbers" then B(Q, R) is denoted by
B(Q), and Co(Q, R) is denoted by Co(Q). If X* is the dual space of X then

Co(Q, (X*, w*)) = {f E c(Q, (X*, w*)); X 0 f E Co(Q) Vx EX},

where x is the image of x under the canonical injection of X in X**.
The following theorem will be used frequently in the next two sections.

1.1. THEOREM. Let Q be a locally compact Hausdorff space and let
X be a normed linear space. There is a mapping a: L(X, Co(Q)) ~
Co(Q, (X*, w*)) defined by

a(T)(q)(x) = T(x)(q) for TEL(X, Co(Q)), qE Q and XEx.

The mapping a is an isometric isomorphism from L(X, Co(Q)) onto
Co(Q, (X*, w*)). Furthermore, a(K(X, Co(Q))) = Co(Q, X*) and

a(Kn(X, Co(Q))) = U {Co(Q, N); N is an n-dimensional subspace ofX*}.
N

The proof of this theorem, when Q is a compact Hausdorff space, can be
found in Dunford and Schwartz [4, p.490].

From Theorem 1.1 one can obtain the following lemma:

1.2. LEMMA. Let Q be a locally compact Hausdorff space and let X be a
normed linear space.
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(a) K(X, Co(Q)) is proximinal in L(X, Co(Q)), iff Co(Q, X*) is
proximinal in Co(Q, (X*, w*)).

(b) Kn(X, Co(Q)) is proximinal in L(X, Co(Q)) [resp. K(X, Co(Q))],
iff the set

U{Co(Q, N); N is an n-dimensional subspace ofX*}
N

is proximinal in Co(Q, (X*, w*)) [resp. Co(Q, X*)]

1.3. DEFINITI01\;. Let Q be a locally compact Hausdorff space and let X
be a normed linear space. HfEB(Q, X) and n is a nonnegative integer let
an(f) = inf{ d( f, Co(Q, N)); N is an n-dimensional subspace of X}.

It follows from Lemma 1.2 that Kn(X, Co(Q)) is proximinal in L(X, Co(Q))
[resp. K(X, Co(Q))] iff an(f) is attained for eachfE Co(Q, (X*, w*)) [resp.
Co(Q, X*)]. The proximinality of Kn(X, Co(Q) in K(X, Co(Q)) was studied
by Deutsch, Mack and Saatkamp [3], and the following theorem is due to
them.

1.4. THEOREM. Let X be a normed linear space, Q a locally compact
Hausdorff space and let n ~ 1 be a positive integer. If the metric projection
P y from x* onto any n-dimensional subspace Y of x* has a continuous
selection, then the set Kn(X, Co(Q)) is proximinal in K(X, Co(Q)).

Theorem 1.4 is not vacuous since Brown [1] showed that, if X is strictly
convex space, or if X is a polyhedral finite-dimensional Banach space, then
the metric projection from X onto any finite-dimensional subspace Y of X
has a continuous selection.

The closed subspace M of Co(Q, X) is called a closed Co(Q)-submodule,
if for eachf EM, and each gE Co(Q), the element g' fE M, where g' f(q) =
g(q)·f(q). It is obvious that if Nis a closed subspace of X, then Co(Q, N) is
a closed Co(Q)-submodule in Co(Q, X). The following theorem deals with
the proximinality of Co(Q)-submodules in B(Q, X).

1.5. THEOREM. (Lau [7]). If Q is a locally compact Hausdorff space,
and X is a uniformly convex space, then for any bounded function f: Q ~ X
and any closed Co(Q)-submodule M in Co(Q, X), there is go EM such that

Ilf - goll = d(f, M).
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2. Kn(X, Co(Q» Is PROXIMAL IN L(X, CO(Q»
WHEN X* Is UNIFORMLY CONVEX

In this section it will be shown that if X* is uniformly convex and Q is a
locally compact Hausdorff space, then Kn(X, Co(Q)) is proximinal in
L(X, Co(Q)). After appealing to Lemma 1.2, the main step in the proof is to
find for eachfE Co(Q, (X*, w*)) an n-dimensional subspace No of X*, such
that

Lemma 2.4 gives an estimate for d(f, Co(Q, N)), and Lemma 2.8 shows that
for some n-dimensional subspace No of X* this estimate is less than or
equal to an(f).

2.1. DEFINITION. Let X be a Banach space, Q a Hausdorff topological
space and f: Q ---+ X a bounded function. For qo E Q, x E X and A ~ X, let

(1) r(f, qo, x) = infu sUPqE u Ilf(q) - xii, where U ranges through all
the neighbourhoods of qo in Q,

(2) r(f, qo, A) = infxEA r(f, qo, x),

(3) r(f,A)=supqOEQr(f,qo,A).

2.2. DEFINITION. For Q a locally compact Hausdorff space, X a Banach
space and f: Q ---+ X a bounded function define

b(f) = inf{a ~ 0; there is a compact subset Kin Q with Ilf( q) II < a

for all q ¢. K}.

2.3. LEMMA. Let X be a Banach space, Q a locally compact Hausdorff
space andf: Q ---+ X a boundedfunction. For any positive integer n ~ 1, any n­
dimensional subspace N of X and any q E Q.

(1) r(j, q, X):;::; r(j, q, N):;::; r(j, N):;::; d(j, Co(Q, N)),

(2) b(f):;::; d(f, Co(Q, N)),

(3) r(j, q, X) :;::; an(f).

Proof (1) It is obvious that r(f, q, X) :;::; r(f, q, N) :;::; r(f, N). So it is
enough to show that r(j, N) :;::; d(j, Co(Q, N)). Let e> 0 be given. There is
g E Co(Q, N) such that

e
Ilf - gil:;::; d(j, Co(Q, N)) +2'
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Let qo E Q. There is a neighbourhood Va of qo such that
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for all q E Uo,

thus

r(1, q(b N):( r(1, qo, g(qo)):( sup Ilf(q) - g(qo)11
qro Uo

:( su~ !if(q) - g(q)'i +-2
0

:( ilf - gl! +-2
0

:( d(1, Co(Q, N)) + 8.
q" [,0

Since qo and s are arbitrary, it follows that r(1, N):( d(.f, Co(Q, N)).

(2) Let 8 > 0 be given. There is g E Co(Q, N) such that

I:III - gil :( d(1, Co(Q, N)) +2'

For the same s, there is a compact subset K of Q with II g(q) il < 1:/2 for each
q¢K. Thus

b(.f):( sup ilf(q)li :( sUPilf(q) -- g(q)li +-2
8

:( lif - gil +-2
8

q¢K q¢k

:( d(1, Co(Q)) + 8.

(3) Follows from (1). I

2.4. LEMMA. Let X be a Banach space, Q a locally compact Hausdorff
space and f: Q~ X a bounded function. If N is an n-dimensional subspace of
X then

d(j; Co(Q, N)) = max {r(j; N), h(.f)}.

Proof By Lemma2.3 d(j;Co(Q,N))~max{r(1,N),h(.f)},thus it is
enough to show that max {r(1, N), h(.f)} ~d(1, Co(Q, N)). Let 8>0 be
given. There is a compact set K <;;;, Q such that lif(q) Ii :( h(.f) + D for each
q ¢ K. By thc compactness of K and the definition of r(1, q, N), one can find
{q;}7'= 1 <;;;, K, {y;}7' 1 <;;;, N ans {V;};: 1 an open cover for Kin Q, such that:

(1) q;EU i foreachi=1,2, ... ,m,

(2) lif(q)- y;11 :(r(j; qi, N)+s for each qE U;, and

(3) Vi is relatively compact for for each i = 1, 2'00" m.

Let V m + 1 = Q/K and let Ym 1 = 0, then for each q E Umi 1

Ilf(q) - Ym+ 111 = Ilf(q)11 :( h(.f) + D.
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Let {tPi }7'=-1;1 be a partition of unity corresponding to {Vi}7'=+/ , and define
the function g: Q --+ N by

m+1

g(q) = L tP/q) Yi
i= I

for qEQ.

Then g is continuous, and since U7'~ I Vi is relatively compact, it follows
that g E Co(Q, N). It follows from the above argument that, for each q E Q,
if q E Vi then Ilf(q) - Yill:::.:; max{r(f, N), b(f) } + e. Also if tP i(q) ¥= 0 then
q E Vi' Thus for each q E Q

IIf(q) - g(q)11 = [tIl tPi(q)(f(q) - YJ/I

= IlL tPi(q)(f(q) - yJII {i; tPi(q) ¥= O}

:::':;L tPlq)lIf(q) - Yill {i; tPlq) ¥= O}

:::.:; max {r(f, N), b(f) } +e

So Ilf - gil:::.:; max {r(f, N), b(f) }+ e. Since e is arbitrary then

d(f, Co(Q, N)):::.:;max{r(f, N), b(f)}. I

2.5. COROLLARY. Let X be a Banach space, Q a locally compact
Hausdorff space and let N be an n-dimensional subspace of X. For each
fECo(Q, X)

d(f, Co(Q, N)) = J(f(Q), N).

Proof If feCo(Q, X) then b(f) = 0, so by Lemma 2.4

d(f, Co(Q, N)) = r(f, N).

Thus to complete the proof it is enough to show that for each q E Q the
equality d(f(q), N) = r(f, q, N) holds, but this follows from the continuity
off

2.6. DEFINITION. Let X be a Banach space, Q a Hausdorff topological
space and f: Q --+ X a bounded function. For each q E Q define



PROXIMINALITY AND SETS OF OPERATORS, I

and for i ~ 1 define

rn(f, q, i) = {x E X; r(J, q, x) ~ an(f) +~}.
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It is clear that if there is an n-dimensional subspace N of X, such that
Co(Q, N) contains a function g for which !If - gil = an(f), then

g(q) E rn(f, q) n N,

that is, for each q E Q the set rn(f, q) n N is not empty.
It will be shown in Lemma 2.8 that if X is a reflexive Banach space, then

there is an n-dimensional subspace No such that rn(f, q) n No # 0 for each
q E Q, this and the results of Lau [7] will be used in Theorem 2.10 to show
that, if X is uniformly convex then an(f) is attained.

2.7. LEMMA. Let X be a Banach space, Q a Hausdorff topological space
and f: Q~ X a bounded function. For each qE Q, the sets rn(f, q) and
rn(f, q, i) are closed and convex. If X is reflexive then they are w-compact.
Furthermore, for each q E Q the following statements are satisfied:

(1) If i < j then Fn(J, q, j) ~ rn(f, q, i);

(2) n;: )rn(f, q, i) = rn(f, q);

(3) if X is reflexive, {Xi}::) is a bounded sequence in X such that
Xi E rll(f, q, i) for each i ~ 1, and Xo is a w-cluster point for the sequence
{Xi}r:.l' then XoErn(f, q).

Proof (2) It is clear that, for each posItIve integer i ~ 1, rnu; q) ~
Tn(f, q, i). Thus rn(f, q) c;; n;:) Fn(f, q, i). On the other hand if x E

n::) Fn(J, q, i), then r(J, q, x) ~ an(f) + (1 Ii) for each i ~ 1 and, therefore
rU; q, x) ~ an(f). Thus X'E rn(J, q).

(3) Since X is reflexive the sets rn(f, q, i) and rn(f, q) are w-compact.
Assume that Xo is a w-cluster point for the sequence {Xi};"] and that XiE
rn(J, q, i) for each i ~ 1, it follows from part (1) of this lemma that for each
positive integer jo~ 1, the subsequence {x;};:iO lies in TnU; q,Jo), but
rn(J, q, i) is w-compact, so XoE rnu; q, ia), therefore,

or;

XoE n rnu; q, io) = rncr, q).
io )

The proof of the next lemma depends on the existence of an Auerbach basis
in each finite-dimensional Banach space. Let X be a Banach space of
dimension n. An Auerbach system on X is a basis {xJ7~ 1 in X with
Ilx;\! = 1 for each i, and a basis {xn7~) in X* with Ilx,*!' = 1 for each i,
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such that x;*(x) = ()ij for each i = 1, 2, ..., nand j = 1, 2, ..., n. In this case
{x J7~ 1 is called an Auerbach basis in X. I

2.8. LEMMA. Let X be a reflexive Banach space, Q a Hausdorff space
and f: Q ---+ X a bounded function. For each nonnegative integer n ): 0 there is
an n-dimensional subspace No of X, such that for each q E Q the set
rn(f, q)" No is not empty.

Proof For each positive integer i): 1, there is an n-dimensional sub­
space N i and a function gi E Co(Q, NJ such that Ilf - gill ~ an(f) + (11 i).
Let {x}, x? ,..., xn an Auerbach basis for N i. There is {g}, ..., gn s;: Co(Q)
such that gi(q)=Lk~l g7(q)x7. Clearly for each qEQ the point dq)=
Lk~lg7(q)x7Ern(f,q,i). Since {x}, ...,xn is an Auerbach basis, the
sequence {(g}, ..., g7)}~l is a bounded sequence in Oi~l B(Q). Let Z=
07~ 1 X x 07~ 1 B( Q) be the topological vector space obtained by giving X
its weak topology, and identifying B(Q) in the standard way with It(Q)
with the w*-topology. Then the sequence {(xf ,..., x7, gf ,... , g7)}~ 1 has a
cluster point (xfJ, ... , x3, gfJ,..., g3) in Z. Let No be an n-dimensional sub­
space of X that contains {xfJ, ..., x3}. It will be shown that for any qoE Q the
point Lk~lg~(qO)X~Ern(f,qo)"No. To prove this it is enough by
Lemma 2.7 to show that the point Lk ~ 1 go(qo) x~ is a w-cluster point for
the sequence {Lk= 1 g7(qo) xn~ 1 in X. Let y # 0 be an element in X*, and
let £ > 0 be given. Since (x6,"" x3, g6,'''' go) is a cluster point for the
sequence {(x}, ..., x7, g}, ..., g7)}~ l' it follows that there is an infinite subset
M of positive integers, such that for each i EM

(1) ILk= 1 g~(qo) y(x~) - Lk= 1 g~(qo) y(x7) I~ £/2, and

(2) for each k = 1, 2, ..., n,

Then for iEM

Ik~l gZ(qo) y(x~)- k~l g~(qo) Y(X~)I

~Ik~l g~(qo) y(x~)- k~l g~(qo) y(X7)1

+ Ikt g~(qo) y(x7) - ktl g~(qo) y(x7)!

nllyll' £

~ ~ + 2n II y II = £.
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Thus the point Lk~l go(qo)x~ is a co-cluster point for the sequence
{Lk~l g~(qO)Xn;:l in X. I

2.9. COROLLARY. Let X, Q, and f be as in Lemma 2.8. There is an n­
dimensional subspace No of X, such that

Proof By Lemma 2.8 there is an n-dimensional subspace No of X such·
that N OrJn(f,q)=l-0 for each qEQ. Thus for each qEQ there is YENo
satisfying the inequality; r(f, q, y) ~ an(f), but then

2.10. THEOREM. If X is a uniformly convex space, Q is a locally compact
Hausdorff space and f: Q ----t X is a bounded function then anef) is attained.

Proof By Lemma 2.4 for any n-dimensional subspace N of X

d(f, Co(Q, N))=max{r(f, N), b(fn,

and by Corollary 2.9 there is an n-dimensional subspace No of X satisfying
r(f, No) ~ an(f). Thus by Lemma 2.3

an(f)~d(f, Co(Q, No)) = max {r(f, No), b(f)}

~ max {an(f), b(f) } = an(f).

So an(f) = d(f, Co(Q, No)), hence by Theorem 1.5 and the fact that
Co(Q, No) is a closed submodule in Co(Q, X), it follows that there is go E

Co(Q, No) such that Ilf - gil = d(f,Co(Q, No)) = anCf). I

2.11. COROLLARY. If X* is uniformly convex "pace and Q is a locally
compact Hausdorff space then for each nonnegative integer n ~ 0 the set
Kn(X, Co(Q)) is proximinal in L(X, Co(Q)).

Proof A consequence of Theorem 2.1 0 and Lemma 1.2. I
Corollary 2.11 was known before for X* = lp 1 < p < u::; and for

Co(Q) = co' Fakhoury [5J proved that for 1< p < u::; the set Kn(lp, Co(Q))
is proximinal in L(lp, Co(Q)), and Deutsch, Mach and Saatkamp [3J
proved that Kn(X, co) is proximinal in L(X, co) when X* is uniformly con­
vex. This corollary gives a positive solution to the problem 5.2.3 in Deutsch
Mach and Saatkamp [3].
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3. THE PRoXIMINALITY OF Kn(X, Co(Q» IN K(X, CO(Q»
WHEN X Is OF FINITE DIMENSION

3.1. LEMMA. Let X be a finite dimensional BCmach space, M and N be
two subspaces of X, such that M + N = X and M n N = {O}, let SM be the
unit sphere of M and let P N be the metric projection from X onto N. Then
any continuous selection for PNI SM can be extended to a continuous selection
for PN·

Proof Assume that g: SM ~ N is a continuous selection for P NISM and
define f: M ~ N by

\

Ilxll g (11;11)
f(x) =

o

ifx#O

if x=O.

The fis a continuous selection for P NI M. Since dim X < 00, M + N = X and
M n N = {O}, it follows that there is bounded projection P: X ~ N with
P(M) = {O} Let h = f 0 (I - P) + P. The h is a continuous function from X
onto N, and for each x E M and each yEN

h(x+ y)=f(x)+ YEPN(X)+ y=PN(x+ y)

So h is a continuous selection for the metric projection PN· I

3.2. LEMMA. Let X be a finite-dimensional Banach space, and let N be a
subspace of X. If the metric projection P N has no continuous selection, then
there is a compact Hausdorff space Q', such that C(Q', N) is not proximinal
in C(Q', X), that there is afunctionfE C(Q', X), such that d(j, C(Q', N») is
not attained.

Proof Let M be a subspace of X such that M + N = X and M n N =
{O}, and let Q' = SM. By Lemma 3.1 there is no continuous function
g: Q' ~ N, such that g(x) E PN(x) for each x E Q'. Since M n N = {O} then,
for each x E Q', d(x, N) # O. Define f: Q' ~ X by

x
f(x) = d(x, N)

Since d(x, N) is a continuous function, it follows that the functionfis con­
tinuous, and b(f(Q'), N) = 1. Therefore, by Corollary 2.5

d(j, C(Q', N)) = 1.
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Assume that there is a continuous function h: Q' --+ N, such that
If - hil = 1, and define g: Q' --+ N by

g(x) = d(x, N) . h(x).

then g is continuous and for each x E Q'

Ilx - g(x)11 = Ild(x, N) f(x) - d(x, N) h(x)1

=d(x, N)llf(x) -- h(xH ~ d(x, N).

But this contradicts Lemma 3.1, so C(Q', N) is not proximina1 in
C(Q', X). I

3.3. LEMMA. Let X be a finite-dimensional Banach space, let n): 1 he a
positive integer such that dim X> n, and let N be an n-dimensional subspace
of X. There is a compact subset A of X, such that dn(A, X) #- 0 and Nis the
unique extremal subspace for dn(A, X).

Proof Let Bx Crespo B N ] be the closed unit ball of X Crespo LV], and Jet
A be the balanced convex hull of Bx +BN , then dn(A, X) = b(A, N) = 1. It
will be shown that N is the unique extremal subspace for dn(A. X). Let
N ' #- N any n-dimensional subspace of X, then b(BN , N ' ) > O. Let y E B N be
such that d(y, N') > 0, let y' E N ' be such that y - y'l = d(y, N ' ), and let
x = y + ((y - i)/II y - y'll). Then x E A, and

d(x, N ' ) = d(y - y' + I?-Y:i + y', N ' ) = 1+ d(y, N' ) > 1.
y-YI

Thus b(A, N') ~ d(x, N ' ) > 1, therefore LV is the unique extremal subspace
for dn(A, X). I

3.4. LEMMA. Let X be a finite-dimensional Banach space, and let n): 1 he
a positive integer. If there is an n-dimensional subspace N of X*, such that
the metric projection P N has no continuous selection, then there is a compact
Hausdorff space Q, such that Kn(X, C(Q)) is not proximinal in L(X, C(Q)).

Proof Since X is of finite dimension then by Lemma 1.2 it is enough to
show that there is a compact Hausdorff space Q, such that the set

{g E C(Q, X*); g( Q) lies in an n-dimensional subspace of X* }

is not proximinal in C(Q, X*).
Let Q' and f be as in Lemma 3.2 applied to X* and N, let A be as in

Lemma 3.3, and let Q be the disjoint topological union of Q' and A.
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Without loss of generality assume that d(f, C(Q', N)) = 1 and dn(A, X) = 1.
Define h: Q - X by

if XE Q'

if XEA.

Then h is continuous, and

an(h) ~ d(h, c(Q, N)) = b(h(Q), N) = 1.

Let N' be an n-dimensional subspace of X* such that d(h, c(Q, N')) ~ 1,
and assume that there is gE c(Q, N') such that Ilh - gil ~ 1, then

so by Lemma 3.3 N' = N, but then gl Q' is continuous on Q' and

Ilf - gl d.~ d(f, C(Q', N),

which contradicts Lemma 3.2. So Kn(X, C(Q)) IS not proximinal in
L(X, C(Q)). I

3.5. THEOREM. Let X be a fi'nite-dimensional Banach space. Then
Kn(X, Co(Q)) is proximinal in L(X, Co(Q)) for each locally compact
Hausdorff space Q, iff the metric projection from x* onto any of its n-dimen­
sional subspaces has a continuous selection.

Proof Since dim X < C/J then L(X, Co(Q)) = K(X, Co(Q)), therefore, the
theorem follows from Theorem 1.4 and Lemma 3.4. I

3.6. Note. Brown [2] proved that there is a finite-dimensional space,
that contains subspaces for which the metric projection has no continuous
selection. This means that Lemma 3.2, Lemma 3.4, and Theorem 3.5 are
not vacuous.

3.7. COROLLARY. Let X be an m-dimensional Banach space. For any
locally compact Hausdorff space Q, K m - 1(X, Co(Q)) is proximinal in
L(X, Co(Q)).

Proof Follows from Theorem 3.5 and the fact that if N is a hyperplane
in a finite-dimensional Banach space X then the metric projection P N from
X onto N has a continuous selection. I
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3.8. COROLLARY. There is a finite-dimensional Banach space X, a sub­
space N of X and a compact Hausdorff space Q, such that C(Q, N) is not
proximinal in C(Q, X).

Proof Follows from Lemma 3.2 and Note 3.6. I

3.9. COROLLARY. There is a finite dimensional Banach space X, a com­
pact Hausdorff space Q and two positive integers m and n, such that
Kn(X, C(Q)) is not proximinal in L(X, C(Q)), whereas Km(X, C(Q)) is
proximinal in L(X, C(Q)).

Proof Follows from Theorem 3.5, Note 3.6, and Corollary 3.7. I
Corollary 3.8 gives a negative solution to problem 5.B of Franchetti and

Cheney [6J, and corollary 3.9 gives a solution to Problem 5.2.5. of Deutsch
et at. [3].
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